Join the millions that use us for their forum communities. Create your own forum today.
zIFBoards - Free Forum Hosting
Welcome to Dozensonline. We hope you enjoy your visit.
You're currently viewing our forum as a guest. This means you are limited to certain areas of the board and there are some features you can't use. If you join our community, you'll be able to access member-only sections, and use many member-only features such as customizing your profile, and sending personal messages. Registration is simple, fast, and completely free. (You will be asked to confirm your email address before we sign you on.)
Join our community!
If you're already a member please log in to your account to access all of our features:

Name:   Password:


 

 The Large Base Aggregator Thread, Stocking charts for Tour Expansion
icarus
Posted: Nov 6 2017, 04:00 PM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



This thread is posted in order to set maps up so that Double Sharp can write prose for Tour des Bases posts. Note that these posts might be deleted as they are expanded, and the thread is merely auxiliary. Comment at Le Tour des Bases, if you please. Once we've hit all these numbers this thread might be deleted to save space.

Bases considered:
{150, 160, 168, 180, 192, 210, 216, 240, 252, 288, 300, 336, 351, 360, 420, 432, 480, 504, 540, 600, 630, 660, 672, 714, 720, 780, 840, 900, 945, 960, 1000, 1008, 1080, 1200, 1260, 1440, 1680, 1728, 2160, 2310, 2520, 2925, 3360, 3780, 3960, 4200, 4320, 4620, 4680, 5040, 5985}

.
Top
icarus
Posted: Nov 6 2017, 04:17 PM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Base 150 | Centoquinquagesimal (Dozenal: Base 106; | Unnilhexal)

The integer 150 is neither squarefree nor a prime power with distinct prime factors {2, 3, 5}, the last of these squared. It has a prime signature of “211”, the first base having such signature is 60. The number 150 has 12 divisors {1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150}, 41 regular numbers in all: {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150}. The number is both highly regular (the 15th in the series, beat by 180) and highly semidivisible (the 12th, beat out by 210). Base 150 has 40 totatives; 4 out of 15 digits is a totative (26.7%), and there are 32 prime totatives. The ω-number 149 (dozenal 105;) is prime, and the α-number 151 (dozenal 107;) is also prime, making for a “bone dry” set of intuitive divisibility tests more or less strictly limited to regulars. The primes 7, 11, and 13 are long primes. The number 13 is Wieferich prime of order 2. Centoquinquagesimal has 99 neutral digits, 29 of these semidivisors (by richness starting with 2: 11, 9, 5, 2, 1, 1) and 70 semitotatives {14, 21, 22, 26, 28, 33, 34, 35, …}. There are 44 quadratic residues.

Digit Map

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

Intuitive Divsibility Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

Regular Numbers

1 2 4 8 16 32 64 128
3 6 12 24 48 96    
9 18 36 72 144      
27 54 108          
81              
5 10 20 40 80
15 30 60 120  
45 90      
135        
25 50 100
75 150  
125
Top
icarus
Posted: Nov 6 2017, 04:32 PM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Base 160 | Centosexagesimal (Dozenal: Base 114; | Ununquadral)

The integer 160 is neither squarefree nor a prime power with 2 distinct prime factors {2, 5}, the first of these raised to the fifth power. It has a prime signature of “51”, the smallest base to have the signature is 96. The number 160 has 12 divisors {1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80, 160}, 18 regular numbers in all. Base 160 has 64 totatives; 2 out of 5 digits is a totative, and there are 35 prime totatives. The ω-number 159 (dozenal 113;) is divisible by 3 and 53. The α-number 161 (dozenal 115;) is divisible by 7 and 23, making for a rich set of intuitive divisibility tests that cover the smallest 4 primes. The primes 11, and 17 are long primes. Centosexagesimal has 85 neutral digits, 6 of these semidivisors (richness 2: 25, 50, 64, 100, 128; richness 3: 125) and 79 semitotatives {6, 12, 14, 15, 18, 22, 24, 26, 28, 30, …}, making it the 42nd highly semitotative number. There are 21 quadratic residues: {0, 1, 4, 9, 16, 25, 36, 41, 49, 64, 65, 80, 81, 89, 96, 100, 105, 121, 129, 144, 145}.

Digit Map

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

Intuitive Divisibility Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

Regular Numbers

1 2 4 8 16 32 64 128
5 10 20 40 80 160    
25 50 100          
125              
Top
icarus
Posted: Nov 6 2017, 07:59 PM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Base 192 | Centoduononagesimal (Dozenal: Base 140; | Unquadranunqual)

The integer 192 is neither squarefree nor a prime power with 2 distinct prime factors {2, 3}, the first of these raised to the sixth power. It has a prime signature of “61”, the smallest base to have the signature. The number 192 has 14 divisors {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 192}, 25 regular numbers in all. Base 192 has 64 totatives; 1 out of 3 digits is a totative, and there are 41 prime totatives. The ω-number 191 (dozenal 13b;) is prime. The α-number 193 (dozenal 141;) is also prime, making for a “bone dry” set intuitive divisibility tests more or less restricted to regular divisibility tests. The number 5 is an alpha-2 prime. The number 13 is a Wieferich prime of the second order. The primes 7, 17, and 19 are long primes. Centoduononagesimal has 115 neutral digits, 11 of these semidivisors (richness 2: 9, 18, 36, 72, 128, 144; richness 3: 27, 54, 108; richness 4: 81, 162) and 104 semitotatives {10, 14, 15, 20, 21, 22, 26, 28, 30, …}, making 192 semitotative-dominant and the 46th highly semitotative number. There are 24 quadratic residues: {0, 1, 4, 9, 16, 25, 36, 41, 49, 64, 65, 80, 81, 89, 96, 100, 105, 121, 129, 144, 145}.

Digit Map

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

Intuitive Divisibility Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

Regular Numbers

1 2 4 8 16 32 64 128
3 6 12 24 48 96 192  
9 18 36 72 144      
27 54 108          
81 162            
Top
Double sharp
Posted: Nov 7 2017, 02:26 AM


Dozens Disciple


Group: Members
Posts: 1,401
Member No.: 1,150
Joined: 19-September 15



I think the 160 post has been overwritten by 192 by accident...

Also, I've already written 480 and 504, and you've already generated the maps for 216 and 252 at the Random Bases thread, so we can skip those four.
Top
icarus
Posted: Nov 7 2017, 02:37 AM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Double sharp, indeed. Just restored it. Problem is I am not backing them up like I had in years past. It sucks. Moving forward.
Top
icarus
Posted: Nov 7 2017, 02:52 AM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Base 288 | Ducentoctoctogesimal (Dozenal: Base 200; | Binabiqual)

The integer 288 is neither squarefree nor a prime power, with 2 distinct prime divisors {2, 3}, the fifth power of the first and the square of the second. It has a prime signature of “52”, the smallest base to have the signature. It is the 60th highly semitotative number. Two hundred eighty eight has 18 divisors {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144, 288}, 29 regular numbers in all. Base two gross has 96 totatives; 1 out of 3 digits is a totative, 59 of these are prime. The ω-number 287 (dozenal 1bb;) is divisible by 7 and 41. The α-number 289 (dozenal 201;) is the square of 17, making for a rich set of intuitive divisibility tests that cover 4 of the 7 smallest primes. The numbers 11, 13, and 19 are long primes. Ducentoctoctogesimal has 175 neutral digits, 11 of these semidivisors (richness 2: 27, 54, 64, 81, 108, 128, 162, 192, 216, 256; richness 3: 243) and 164 semitotatives {10, 14, 15, 20, 21, 22, 26, 28, 30, …}, making it semitotative dominant and highly semitotative. There are 28 quadratic residues.

Digit Map

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

Intuitive Divisibility Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

Regular Numbers

1 2 4 8 16 32 64 128 256
3 6 12 24 48 96 192    
9 18 36 72 144 288      
27 54 108 216          
81 162              
243                
Top
icarus
Posted: Nov 7 2017, 03:44 AM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Base 300 | Trecentesimal (Dozenal: Base 210; | Biuniunqual)

The integer 300 is neither squarefree nor a prime power, with 2 distinct prime divisors {2, 3, 5}, the square of the first and the third primes. It has a prime signature of “221”, the smallest base to have the signature is 180. It is the 61st highly semitotative number. Three hundred has 18 divisors {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150, 300}, 55 regular numbers in all. Base 300 has 80 totatives; 4 out of 15 digits is a totative, 59 of these are prime. The ω-number 299 (dozenal 20b;) is divisible by 13 and 23. The α-number 301 (dozenal 211;) is the product of 7 and 43, making for a rich set of intuitive divisibility tests that cover the 4 smallest primes and 13. The numbers 17 and 19 are long primes. Trecentesimal has 203 neutral digits, 37 of these semidivisors (by richness starting with 2: 20, 12, 4, 1) and 166 semitotatives {14, 21, 22, 26, 28, 33, 34, 35, …}, making it semitotative dominant and highly semitotative. There are 44 quadratic residues.

Digit Map

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Intuitive Divisibility Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Regular Numbers

1 2 4 8 16 32 64 128 256
3 6 12 24 48 96 192    
9 18 36 72 144 288      
27 54 108 216          
81 162              
243                
5 10 20 40 80 160
15 30 60 120 240  
45 90 180      
135 270        
25 50 100 200
75 150 300  
225      
125 250
Top
Double sharp
Posted: Nov 7 2017, 03:44 AM


Dozens Disciple


Group: Members
Posts: 1,401
Member No.: 1,150
Joined: 19-September 15



Regarding 420, the link on the Le Tour OP is to your old locked thread, which I can't add to and only contains an image of the digit map, so we should probably consider it as needing to be done here too.

BTW, a little heads up for the automation: the text for base 300 once uses the name "ducentoctoctogesimal" for it, which is the preceding base 288.
Top
icarus
Posted: Nov 7 2017, 03:51 AM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Yeah, the prose is not fully automated. Writing the code right now to accommodate all the hiccups would delay us. So I am cutting and pasting out of the extractor code. Turning in for the night. I am out of town near the weekend and will be offline. May still get a dozen more done. Have to rehearse and tomorrow I teach digital modeling for high school robotics, then tutor the next day at a middle school. So a little chopped up this week. Next Tuesday a seminar all day on building codes, but conflicts with the HS, ugh.

The HTML is preferable to the image. We don't need an image for as "low" as 420. I thought I unlocked all of them now, will check.

The only problem is the HTML is a memory hog by the time we get to large tables.
Top
Double sharp
Posted: Nov 7 2017, 04:30 AM


Dozens Disciple


Group: Members
Posts: 1,401
Member No.: 1,150
Joined: 19-September 15



Yeah, they are all unlocked now: thank you!

When do we start needing the images? Around 960 or 1080, perhaps? Note that I am just guessing, so if it can go on a bit further, I'd greatly prefer the inline HTML maps. happy.gif

(Now there is enough interesting discussion in this thread about the automation that I am not sure we need to delete it. It would be interesting for a reader to just see the digit maps in one place, as well as give some of the more interesting cases a one-at-a-time detailed look when considering them as auxiliaries.)

Looking forward to the next ones! happy.gif
Top
icarus
Posted: Nov 7 2017, 12:24 PM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Base 336 | Trecentohexatrigesimal (Dozenal: Base 240; | Biquadranunqual)

The integer 336 is neither squarefree nor a prime power, with 2 distinct prime divisors {2, 3, 7}, product of the last two and the fourth power of the first. It has a prime signature of “411”, the smallest base to have the signature is 240. It is the 66th highly semitotative number. Three hundred thirty six has 20 divisors {1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336}, 50 regular numbers in all. Base 336 has 96 totatives; 2 out of 7 digits is a totative, 64 of these are prime. The ω-number 335 (dozenal 23b;) is divisible by 5 and 67. The α-number 337 (dozenal 241;) is prime, making for a set of intuitive divisibility tests dominated by the omega that cover the 3 smallest primes. The numbers 11 and 13 are long primes, 11 being a 2nd order Wieferich prime. Trecentohexatrigesimal has 221 neutral digits, 30 of these semidivisors (by richness starting with 2: 21, 5, 3, 1) and 191 semitotatives {10, 15, 20, 22, 26, 30, 33, 34, …}, making it semitotative dominant and highly semitotative. There are 44 quadratic residues.

Digit Map

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

Intuitive Divisibility Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

Regular Numbers

1 2 4 8 16 32 64 128 256
3 6 12 24 48 96 192    
9 18 36 72 144 288      
27 54 108 216          
81 162 324            
243                
7 14 28 56 112 224
21 42 84 168 336  
63 126 252      
189          
49 98 196
147 294  
Top
icarus
Posted: Nov 8 2017, 04:18 AM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Base 420 | Quadringentovigesimal (Dozenal: Base 2b0; | Bilevanunqual)

The number 420 is neither squarefree nor a prime power with 4 distinct prime divisors {2, 3, 5, 7}. Its prime decomposition is 22 × 3 × 5 × 7 and has the prime signature “2111”, the smallest base to have such signature. Four hundred twenty is the twentieth highly regular and the sixteenth highly semidivisible number. Four hundred twenty has 24 divisors {1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140, 210, 420}, 24 regular numbers in all. Base 420 has 96 totatives (8 out of 35 digits, 22.9%), and there are 77 prime totatives. The quadringentovigesimal ω-number is 419, a prime.. The α-number is 421, also prime. Both ω and α prime makes for a “bone dry“ set of quadringentovigesimal intuitive divisibility tests that cover the 4 smallest primes. There are 301 neutral digits, of which 72 are semidivisors (quantities by richness starting with 2: 44, 20, 7, 1) and 229 are semitotatives (22, 26, 33, 34, …). Long primes in base 420 include 11, 17, and 19. In base 420, 17 is a second-order Wieferich prime. There are 48 quadringentovigesimal quadratic residues.

Digit Map

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

Intuitive Divisibility Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

Top
icarus
Posted: Nov 8 2017, 04:21 AM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Base 432 | Quadringentoduotrigesimal (Dozenal: Base 300; | Trinabiqual)

The number 432 is neither squarefree nor a prime power with 2 distinct prime divisors {2, 3}. Its prime decomposition is 24 × 33 and has the prime signature “43”, the smallest base to have such signature. Four hundred thirty two has 20 divisors {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54, 72, 108, 144, 216, 432}, 20 regular numbers in all. Base 432 has 144 totatives (1 out of 3 digits, 33.3%), and there are 81 prime totatives. The quadringentoduotrigesimal ω-number is 431, a prime.. The α-number is 433, also prime. Both ω and α prime makes for a “bone dry“ set of quadringentoduotrigesimal intuitive divisibility tests that cover 2 of the 8 smallest primes. There are 269 neutral digits, of which 12 are semidivisors (richness 2: 32, 64, 81, 96, 128, 162, 192, 243, 256, 288, 324, 384) and 257 are semitotatives (10, 14, 15, 20, 21, 22, 26, 28, 30, 33, 34, …). Of the 257 semitotatives, there are 28 alpha-2-related semitotatives and 229 opaque semitotatives. Long primes in base 432 include 5, 7, 17, and 19. In base 432, 5 is a third-order Wieferich prime. There are 44 quadringentoduotrigesimal quadratic residues.

Digit Map

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

Intuitive Divisibility Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

Regular Numbers

1 2 4 8 16 32 64 128 256
3 6 12 24 48 96 192 384  
9 18 36 72 144 288      
27 54 108 216 432        
81 162 324            
243                
Top
icarus
Posted: Nov 8 2017, 01:00 PM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Base 540 | Quingentoquadragesimal (Dozenal: Base 390; | Trienneanunqual)

The number 540 is neither squarefree nor a prime power with 3 distinct prime divisors {2, 3, 5}. Its prime decomposition is 22 × 33 × 5 and has the prime signature “321”, the smallest base to have such signature is 360. Five hundred forty has 24 divisors {1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 540}, 24 regular numbers in all. Base 540 has 144 totatives (4 out of 15 digits, 26.7%), and there are 96 prime totatives. The quingentoquadragesimal ω-number is 539, which is divisible by 7, 11, 49, and 77. The α-number is 541, a prime. The base has omega-dominant intuitive divisibility tests that cover the 5 smallest primes. There are 373 neutral digits, of which 45 are semidivisors (quantities by richness starting with 2: 29, 12, 3, 1) and 328 are semitotatives (14, 21, 22, 26, 28, 33, 34, 35, …). Of the 328 semitotatives, there are 17 alpha-2-related semitotatives, 63 omega-related semitotatives, and 248 opaque semitotatives. Long primes in base 540 include {13}. In base 540, 7 is a second-order and 17 is a second-order Wieferich prime. There are 66 quingentoquadragesimal quadratic residues.

Digit Map

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
Top
icarus
Posted: Nov 8 2017, 01:01 PM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



(540 continued)

Intuitive Divisibility Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

Regular Numbers

1 2 4 8 16 32 64 128 256 512
3 6 12 24 48 96 192 384    
9 18 36 72 144 288        
27 54 108 216 432          
81 162 324              
243 486                
5 10 20 40 80 160 320
15 30 60 120 240 480  
45 90 180 360      
135 270 540        
405            
25 50 100 200 400
75 150 300    
225 450      
125 250 500
375    
Top
icarus
Posted: Nov 13 2017, 01:27 PM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Base 600 | Sescentesimal (Dozenal: Base 420; | Quadbinanunqual)

The number 600 is neither squarefree nor a prime power with 3 distinct prime divisors {2, 3, 5}. Its prime decomposition is 23 × 3 × 52 and has the prime signature “321”, the smallest base to have such signature is 360. Six hundred has 24 divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 600}, 24 regular numbers in all. Base 600 has 160 totatives (4 out of 15 digits, 26.7%), and there are 106 prime totatives. The sescentesimal ω-number is 599, a prime. The α-number is 601, also prime. Both ω and α prime makes for a “bone dry” set of sescentesimal intuitive divisibility tests that cover the 3 smallest primes. There are 417 neutral digits, of which 47 are semidivisors (quantities by richness starting with 2: 29, 12, 4, 2) and 370 are semitotatives (14, 21, 22, 26, 28, …). Of the 370 semitotatives, there are 2 alpha-2-related semitotatives and 368 opaque semitotatives. Long primes in base 600 include 7, 11, 13, and 17. There are 66 sescentesimal quadratic residues.

Digit Map

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
Top
icarus
Posted: Nov 13 2017, 01:28 PM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Intuitive Divisibility Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
Top
icarus
Posted: Nov 13 2017, 01:30 PM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Base 630 | Sescentotrigesimal (Dozenal: Base 446; | Quadquadhexal)

The number 630 is neither squarefree nor a prime power with 4 distinct prime divisors {2, 3, 5, 7}. Its prime decomposition is 2 × 32 × 5 × 7 and has the prime signature “2111”, the smallest base to have such signature is 420. Six hundred thirty is the twenty first highly regular and the seventeenth highly semidivisible number. Six hundred thirty has 24 divisors {1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 30, 35, 42, 45, 63, 70, 90, 105, 126, 210, 315, 630}, 24 regular numbers in all. Base 630 has 144 totatives (8 out of 35 digits, 22.9%), and there are 110 prime totatives. The sescentotrigesimal ω-number is 629, which is divisible by 17 and 37. The α-number is 631, a prime. The base has omega-dominant intuitive divisibility tests that cover the 4 smallest and further, 5 of the smallest 8 primes. There are 463 neutral digits, of which 91 are semidivisors (quantities by richness starting with 2: 44, 21, 11, 6, 5, 2, 1, 1) and 372 are semitotatives (22, 26, 33, 34, …). Of the 372 semitotatives, there are 7 alpha-2-related semitotatives, 37 omega-related semitotatives, and 328 opaque semitotatives. Long primes in base 630 include 13 and 19. There are 96 sescentotrigesimal quadratic residues.

Digit Map

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
Top
icarus
Posted: Nov 13 2017, 01:31 PM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Intuitive Divisibility Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
Top
icarus
Posted: Nov 13 2017, 01:36 PM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Base 660 | Sescentosexagesimal (Dozenal: Base 470; | Quadseptanunqual)

The number 660 is neither squarefree nor a prime power with 4 distinct prime divisors {2, 3, 5, 11}. Its prime decomposition is 22 × 3 × 5 × 11 and has the prime signature “2111”, the smallest base to have such signature is 420. Six hundred sixty has 24 divisors {1, 2, 3, 4, 5, 6, 10, 11, 12, 15, 20, 22, 30, 33, 44, 55, 60, 66, 110, 132, 165, 220, 330, 660}, 24 regular numbers in all. Base 660 has 160 totatives (8 out of 33 digits, 24.2%), and there are 116 prime totatives. The sescentosexagesimal ω-number is 659, a prime.. The α-number is 661, also prime. Both ω and α prime makes for a “bone dry” set of sescentosexagesimal intuitive divisibility tests that cover the 3 smallest and further, 4 of the smallest 8 primes. There are 477 neutral digits, of which 81 are semidivisors (quantities by richness starting with 2: 44, 24, 10, 3) and 396 are semitotatives (14, 21, 26, 28, …). Of the 396 semitotatives, there are 22 alpha-2-related semitotatives and 374 opaque semitotatives. Long primes in base 660 include 17 and 19. In base 660, 19 is a second-order Wieferich prime. There are 72 sescentosexagesimal quadratic residues.

Digit Map

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
Top
icarus
Posted: Nov 13 2017, 01:37 PM


Dozens Demigod


Group: Admin
Posts: 1,913
Member No.: 50
Joined: 11-April 06



Intuitive Divisibility Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
Top
Double sharp
Posted: Nov 13 2017, 02:30 PM


Dozens Disciple


Group: Members
Posts: 1,401
Member No.: 1,150
Joined: 19-September 15



QUOTE (icarus @ Nov 13 2017, 01:27 PM)
Six hundred is a  that also number.

Is there something in your scripted paragraph that's not working for 600 and 660?

BTW, I see from the Random Bases thread that Stella suggested 780, which I missed; would you terribly mind adding it to your list? It's introducing for being a (Gaussian) HCN, and also being 2^2 * 3 * 5 * 13 next to 19 * 41 (omega) and 11 * 71 (alpha), granting it some amazing transparency (shame about 7, though).
Top
« Next Oldest | Large bases (Sixty and up ...) | Next Newest »
DealsFor.me - The best sales, coupons, and discounts for you

Topic Options



Hosted for free by zIFBoards* (Terms of Use: Updated 2/10/2010) | Powered by Invision Power Board v1.3 Final © 2003 IPS, Inc.
Page creation time: 0.2542 seconds · Archive